Контракт предполагает достижение результата, при котором аналоговая система будет способна распознавать статические цифровые изображения. Если исследователям удастся добиться производительности, сопоставимой с существующими цифровыми решениями, то разработка сможет применяться в более сложных задачах, связанных с восприятием — в частности, в беспилотных автомобилях и автономных дронах.
«Исследования нейробиологов показали, что механизм обратного распространения ошибки, лежащий в основе современных нейронных сетей, биологически неправдоподобен – системы восприятия нашего мозга работают иначе, — пояснил Майкл Хуанг (Michael Huang), профессор Рочестерского университета. — Чтобы решить эту проблему, мы задались вопросом: как это делает мозг? Преобладающей теорией стало предиктивное кодирование, предполагающее иерархический процесс прогнозирования и корректировки. Представьте, что вы перефразируете услышанное, сообщаете это говорящему и используете его ответ как обратную связь для уточнения своего понимания».
Важно подчеркнуть, что, несмотря на новизну подхода, система будет базироваться на проверенных временем технологиях производства полупроводников. В частности, планируется использовать существующие техпроцессы, такие как комплементарная металл-оксид-полупроводниковая структура (КМОП).